The Properties of Exponents can be used to simplify exponential expressions.

Properties of Exponents	For all nonzero real numbers x and y and integers m and n .	Algebra	Numbers
Product of Powers Property	To multiply powers with the same base, add the exponents.	$x^m \cdot x^n = x^{m+n}$	$4^3 \cdot 4^2 = 4^{3+2} = 4^5$
Quotient of Powers Property	To divide powers with the same base, subtract the exponents.	$\frac{x^m}{x^n} = x^{m-n}$	$\frac{3^7}{3^2} = 3^{7-2} = 3^5$
Power of a Power Property	To raise one power to another, multiply the exponents.	$(x^m)^n = x^{m + n}$	$(4^3)^2 = 4^{3 \cdot 2} = 4^6$
Power of a Product Property	To find the power of a product, apply the exponent to each factor.	$(xy)^{m} = x^{m}y^{m}$	$(3 \cdot 4)^2 = 3^2 \cdot 4^2$
Power of a Quotient Propterty	To find the power of a quotient, apply the exponent to the numerator and denominator.	$\left(\frac{x}{y}\right)^{m} = \frac{x^{m}}{y^{m}}$	$\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2}$
Negative Exponent Property	A nonzero base raised to the negative exponent is equal to the reciprocal of the base raised to the positive exponent.	$x^{-n} = \left(\frac{1}{x}\right)^n$	$7^{-2} = \left(\frac{1}{7}\right)^2$
		$\left(\frac{x}{y}\right)^{-n} = \left(\frac{y}{x}\right)^n$	$\left(\frac{3}{2}\right)^{-4} = \left(\frac{2}{3}\right)^4$
Identity Exponent Property	A nonzero quantity raised to the first power is equal to itself.	× 1 = ×	81 = 8
Zero Exponent Property	A nonzero quantity raised to the zero power is equal to 1.	× 0 = 1	125 ⁰ = 1

Laws of Exponents

Product of Powers	xm·xn	= x ^{m + n}
Quotient of Powers	×m ×n	= x ^{m-n}
Power of a Power	(x ^m) ⁿ	= x ^{m · n}
Power of a Product	(xy) ^m	= x ^m y ^m
Power of a Quotient	(×y) ^m	= xm/ym
Negative Exponent	× -n	$= \left(\frac{1}{x}\right)^n$
	$\left(\frac{x}{y}\right)^{n}$	$= \left(\frac{y}{x}\right)^n$
Identity Exponent	x ¹	= x
Zero Exponent	×°	= 1

Summary of Logarithmic Properties (for all formulas, x , y , and b , are all x 0, x 1)				
Product Rule:	$\log_b(xy) = \log_b x + \log_b y$	Remember, if you multiply inside the parentheses, you add logs on the outside.		
Division Rule:	$\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$	Remember, if you divide inside the parentheses, you subtract logs on the outside.		
Power Rule:	$\log_b(x^p) = p\log_b x$	Remember, if you raise to a power inside the parentheses, you multiply by that power on the outside.		
Change of Base Rule:	$\log_b(x) = \frac{\log_{10} x}{\log_{10} b} \text{or} \log_b(x) = \frac{\ln x}{\ln b}$	Remember, put the larger number (argument) on top, the smaller (base) on bottom. This is useful for the calculator if you don't have the LOGBASE function.		

Note that $\log x$ and $\ln x$ are not defined when x is negative or 0.

1.
$$\log(AB) = \log A + \log B$$

$$2. \log\left(\frac{A}{B}\right) = \log A - \log B$$

3.
$$\log(A^p) = p \log A$$

4.
$$\log(10^x) = x$$

5.
$$10^{\log x} = x$$

$$1. \ln (AB) = \ln A + \ln B$$

$$2. \ln\left(\frac{A}{B}\right) = \ln A - \ln B$$

3.
$$\ln\left(A^p\right) = p \ln A$$

4.
$$\ln e^x = x$$

5.
$$e^{\ln x} = x$$

In addition, $\log 1 = 0$ because $10^0 = 1$, and $\ln 1 = 0$ because $e^0 = 1$.

Operation	Laws of exponents	Laws of logs	
Multiplication	$x^m \cdot x^n = x^{m+n}$	$log(a \cdot b) = log(a) + log(b)$	
Division	$\frac{x^m}{x^n} = x^{m-n}$	$\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$	
Exponentiation	$(x^m)^n = x^{mn}$	log(a ⁿ) = n·log(a) One of the most useful properties of logs	
Zero property	x ⁰ = 1	log(1) = 0	
Inverse	$x^{-1} = \frac{1}{x}$	$\log(x^{-1}) = \log\left(\frac{1}{x}\right) = -\log(x)$	