Factoring Quadratics

2 Terms	3 Terms
1. Factor out GCF*	1. Factor out GCF*
2. Difference of	2. Trinomial with a
Squares:	leading coefficient of 1:
$\mathbf{a}^2 - \mathbf{b}^2$	$x^2 + bx + c$
	3. Trinomial with a
	leading coefficient other
	than 1:
	$ax^2 + bx + c$

The approaches used in factoring expressions depend on the number of terms that the expression contains. *Remember that your factoring can always be checked by multiplying it out.*

*No matter how many terms an expression has, factoring out the GCF should always be done FIRST .

Factoring a Difference of Squares:

Both terms must be perfect squares, and they must be separated by subtraction. If so,

 $a^2 - b^2$ factors into (a - b)(a + b)

Examples: $x^2 - 16 = (x - 4)(x + 4)$

 $9x^2 - 25 = (3x - 5)(3x + 5)$

Factoring Quadratic Trinomials with Leading Coefficient of 1:

 $x^{2} + bx + c$ factors into (x + p)(x + q) by finding the values of p and q that meet the following criteria: $p \cdot q = c$ AND p + q = b

Finding p and q:

- 1. List all possible pairs of factors of c. Remember to include + / .
- 2. Determine which factors will add together to give the middle coefficient, b. Note: If no factors can be found, it does not factor with this method.

Example: $x^2 - 12x + 27$

```
Step 1) Factors of c.
```

1, 27	-1, -27
3, 9	-3, -9

Step 2) Sum of factors equals middle coefficient, b.

1 + 27 = 28	-1 + (-27) = -28
3 + 9 = 12	-3 + (-9) = -12

Now, you can write the factored form (x + p) (x + q) by placing the correct factors p and q. (x - 3)(x - 9)

Factoring Quadratics

Remember to check your answer by multiplying to compare.

(x - 3)(x - 9) $x^{2} - 3x - 9x + 27$ $x^{2} - 12x + 27$ original: $x^{2} - 12x + 27$

Factoring Quadratic Trinomials with Leading Coefficient Other Than 1:

- 1. Multiply the leading coefficient and the constant together, $a \cdot c$.
- 2. List all possible factors of the result from step one.
- 3. Determine which factors, p and q, will add together to give the middle coefficient, b. Note: If no factors can be found, a different form of factoring must be used.
- 4. Write as (x + p)(x + q).
- 5. Since we had to multiply by a in step 1, we now need to undo that by dividing p and q by a.
- 6. If a does not divide into p and q evenly, clear the fraction in that factor.
- 7. This will give your factored form.
- 8. Check your answer by multiplying to compare to the original trinomial.

Example: $2x^2 + 17x + 26$

Step 1) Multiply a & c. $2 \cdot 26 = 52$

Step 2) Factors of $a \cdot c$.

1, 52	-1, -52
2,26	-2, -26
4, 13	-4, -13

Step 3) Sum of the factors equals middle term.

1 + 52 = 53	-1 - 52 = -53
2 + 26 = 28	-2 - 26 = -28
$4 + 13 = 17$ \bigcirc	-4 - 13 = -17

Step 4) Write as (x + p) (x + q). (x + 4)(x + 13)

Step 5) Divide p and q by a.

$$(x+2)(x+\frac{13}{2})$$

Step 6) Clear fraction left in step 5. (x + 2) [2(x + $\frac{13}{2}$)] = (x + 2) (2x + 13)

Step 7) Factored form.

(x+2)(2x+13)

Step 8) Remember to check your answer by multiplying.

 $(x + 2)(2x + 13) = 2x^{2} + 13x + 4x + 26 = original: 2x^{2} + 17x + 26$