Graphing Sine and Cosine

First, let's look at the parent graphs of sine and cosine:

You can see how the points on the graph of each parent function correlates to the values for that function on the unit circle. For example:
$\sin (0)=0$ and $(0,0)$ is a point on $y=\sin (x)$ $\cos \left(\frac{\pi}{2}\right)=0$ and $\left(\frac{\pi}{2}, 0\right)$ is a point on $\mathrm{y}=\cos (\mathrm{x})$ $\sin \left(\frac{\pi}{2}\right)=1$ and $\left(\frac{\pi}{2}, 1\right)$ is a point on $y=\sin (x)$

Notes:

- The sine parent graph crosses through the origin.
- The sine and cosine parent graphs each oscillate between $\mathrm{y}=-1$ and $\mathrm{y}=1$.
- The ordered pairs for these graphs were derived from the unit circle.

To graph sine and cosine, use the general forms:

$$
y=A \sin [B(x-C)]+D \quad y=A \cos [B(x-C)]+D
$$

Transformations of the parent graphs can include:

1. A change in amplitude: The amplitude is $|A|$. Graphically it is the distance from the midline to the top and bottom of the graph. The amplitude of the parent graphs is 1 .

2. A reflection over the x -axis: If $\mathrm{A}<0$, then the graph is reflected over the x -axis.
3. A change in the period of the function: The period of sine and cosine functions is found by evaluating $\frac{2 \pi}{B}$ for $\mathrm{B}>0$. The period of a function is the length of one cycle. The period of the parent graphs of sine and cosine is 2π since $\mathrm{B}=1$.

Graphing Sine and Cosine

4. Horizontal translation also called a phase shift: The phase shift of the parent graph is C. This is how far the graph is shifted to the right (for $\mathrm{C}>0$) or to the left (for $\mathrm{C}<0$).
5. Vertical Translation: The distance that the graph is shifted vertically is D. The graph is shifted up for $\mathrm{D}>0$ and down for $\mathrm{D}<0$.

Example Graphs:

Sine graph shifted C units to the right with amplitude A .

Cosine graph shifted D units up with a period of $\frac{2 \pi}{B}$.

Example Problem:

Determine the amplitude, period, phase shift, and vertical shift. Then graph two cycles of the function:

$$
y=3 \sin \left(2 x+\frac{\pi}{2}\right)
$$

1. Rewrite in general form by factoring a 2 out of $2 \mathrm{x}+\frac{\pi}{2}: \quad y=3 \sin \left[2\left(x+\frac{\pi}{4}\right)\right]$

From this equation we get:
$\mathrm{A}=3, \mathrm{~B}=2, \mathrm{C}=-\frac{\pi}{4}$ and $\mathrm{D}=0$
So, the amplitude is $\mathrm{A}=3$, the period is $\frac{2 \pi}{B}=\frac{2 \pi}{2}=\pi$, the phase shift is $\frac{\pi}{4}$ units to the left, and there is no vertical shift.
2. Find 5 key points on the graph by using the 5 key x-values from the parent graphs: $0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and 2π.
a. Divide each x-coordinate from the parent graph by B and then add C.
b. Multiply each y-coordinate by A and then add D.

5 key points on the parent graph of $y=\sin (\mathrm{x})$	$(0,0)$	$\left(\frac{\pi}{2}, 1\right)$	$(\pi, 0)$	$\left(\frac{3 \pi}{2},-1\right)$	$(2 \pi, 0)$
5 key points on the transformed graph of $y=3 \sin \left[2\left(x+\frac{\pi}{4}\right)\right]$	$\left(-\frac{\pi}{4}, 0\right)$	$(0,3)$	$\left(\frac{\pi}{4}, 0\right)$	$\left(\frac{\pi}{2},-3\right)$	$\left(\frac{3 \pi}{4}, 0\right)$

3. Sketch a graph using these five points:

