MATIII REVIEW

Ch. 2-6

SUMMARIES FOR DISTRIBUTIONS

Symmetric Distributions

- Bell shaped
- The mean is a good representation for the "typical value"
- Mean = Median
- Majority of observations are less than one standard deviation from the mean.

Skewed Distributions

- Higher on one end
- The median represents a "typical value" in a skewed distribution
- Skewed Left: Mean < Median
- Skewed Right: Mean > Median

EMPIRICAL RULE

Z-SCORES

- Z-Scores measure how many standard deviations away an observation is from the mean.
- Positive Z-Score \rightarrow Observed value is greater than the mean
- Negative Z-Score \rightarrow Observed value is less than the mean

$$
z=\frac{\text { Observed Value }- \text { Mean }}{\text { Standard Deviation }}
$$

Finding Mean and Standard Deviation: StatCrunch - Stat - Summary Stats

BOXPLOTS

- 5 number Summary: Minimum, Q1, Median, Q3, Maximum

- Potential Outliers are numbers outside the "fences":
- Lower fence: Q1 - 1.5(IQR)
- Upper fence: Q3 + 1.5(IQR)

StatCrunch - Stat - Summary Stats

EXAMPLE: ANALYZE BOXPLOTS

- Which boxplot shows the most variation?

Boxplot D

- Which boxplot shows the least variation?

Boxplot A

REGRESSION ANALYSIS

- Correlation Coefficient (r):

Always between -l and l

- A strong correlation is closer to -l or 1
- A weak correlation is closer to 0

- Regression Line (also Line of Best Fit or Least Squares): For making predictions about future observed values
- x - explanatory, predictor, independent
- y - response, predicted, dependent

StatCrunch - Stat - Regression - Simple Linear - Select x and y

EXAMPLE: MATCH SCATTERPLOTS TO CHLCULATED CORRELATIONS

- Three scatterplots are shown below. The calculated correlations are $0.915,-0.782$, and 0.037. Determine which correlation goes with which scatterplot.

0.915

-0.782

0.037

EXAMPLE: REGRESSION ANALYSIS

Father	Son
75	74
72.5	71
73	71
70	74
70	68.5
70	70
68	68
68	66.5
70	71
68.5	66.5
68.5	65.5
68.5	71
67	67
65.5	64.5
64	67

EXAMPIE: RECRESSION ANAIYSIS

Father	Son
75	74
72.5	71

| a. Find and report the regression equation for predicting the son's | 73 | 71 |
| :--- | :--- | :--- | :--- | height from the father's height.

StatCrunch - Stat -
Regression - Simple Linear
Choose x and y variables

Son's Height $=14.59$ + 0.79 Father's Height

Simple linear regression results:								
Dependent Variable: Son's Height								
Independent Variable: Father's Height								
Son's Height $=14.586898+0.78641938$ Father's Height								
Sample size: 15								
R (correlation coefficient) $=0.75396424$								
$\mathrm{R}-\mathrm{sq}=0.56846207$								
Estimate of error standard deviation: 2.0060827								
Parameter estimates:								
Parameter		Estimate	Std. Err.	Alternati		DF	T-Stat	P-value
Intercept		14.586898	13.167181		0	13	1.1078224	0.288
Slope		0.78641938	0.19003836		0	13	4.1382139	0.0012
Analysis of variance table for regression model:								
Source	DF	SS	MS	F-stat		value		
Model	1	68.916552	68.916552	17.124815		0012		
Error	13	52.316781	4.0243678					
Total	14	121.23333						

	Father	Son
	75	74
	72.5	71
Inte	73	71
	70	74
	70	68.5
Son's Height=14.59 + 0.79 Father's Height	70	70
	68	68
For every additional inch on the Father's height, on average, the	68	66.5
Son's height goes up by 0.79 inches.	70	71
	68.5	66.5
	68.5	65.5
	68.5	71
	67	67
	65.5	64.5
	64	67

| Father | Son |
| :--- | :--- | :--- | :--- | :--- |
| | |

PROBABILITY

Theoretical Probability

- Long run relative frequencies - what would occur after infinitely many repetitions
- Rules:

$$
\begin{gathered}
P(x)=\frac{\text { Number of outcomes in } x}{\text { Number of outcomes possible }} \\
0 \leq P(x) \leq 1
\end{gathered}
$$

Empirical Probability

- Relative frequencies based on an experiment or on observations of a real life process
- The Law of Large Numbers: The larger the number of repetitions, the closer the empirical probability will be to the theoretical probability

EXAMPLE: PROBABILITY

A person was trying to figure out the probability of getting two heads when flipping two coins. He flipped two coins 20 times, and in 4 of these 20 times, both coins landed heads. On the basis of this outcome, he claims that the probability of two heads is $4 / 20$, or 20%.

Is this an example of an empirical probability or a theoretical probability? Explain.

This is an example of empirical probability because it is based on an experiment.

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | All |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| All | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
a. What is the probability that the person from the table is male?

$$
\frac{551}{1277}=\mathbf{0 . 4 3 1}
$$

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | All |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| All | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
b. What is the probability that the person said Yes?

$$
\frac{1000}{1277}=\mathbf{0 . 7 8 3}
$$

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | All |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| All | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
c. Are the event being male and the event saying Yes mutually exclusive? Why or why not?

The events are not mutually exclusive because a person chosen could be male and say yes.

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | All |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| All | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
d. What is the probability that a person is male and said Yes?

$$
\frac{404}{1277}=\mathbf{0 . 3 1 6}
$$

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | All |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| All | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
e. What is the probability that a person is male or said Yes?

To find the probability that a person is male or said yes, why should you subtract the probability that a person is male and said Yes from the sum as shown below?
$P($ male or $Y e s)=P($ male $)+P(Y e s)-P($ male and Yes $)$

$$
\frac{551}{1277}+\frac{1000}{1277}-\frac{404}{1277}=\mathbf{0 . 8 9 8}
$$

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | A11 |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| A11 | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
f. What is the probability that a randomly chosen person was male given that the person said Yes. In other words, what percentage of the people who said Yes were male?

$$
\begin{gathered}
\frac{404}{1000}=\mathbf{0 . 4 0 4} \\
=\mathbf{4 0 . 4} \%
\end{gathered}
$$

\section*{EXAMPLE: PROBABILITY
 | | Female | Male | A11 |
| :--- | :--- | :--- | :--- |
| No | 41 | 51 | 92 |
| Unsure | 89 | 96 | 185 |
| Yes | 596 | 404 | 1000 |
| A11 | 726 | 551 | 1277 |}

A poll asked people if college was worth the financial investment. They also asked the respondent's gender. The table above shows a summary of the responses.
g. Find the probability that a randomly chosen person who reported being Unsure was female. In other words, what percentage of the people who were Unsure were female?

$$
\begin{gathered}
\frac{89}{185}=0.481 \\
=\mathbf{4 8 . 1} \%
\end{gathered}
$$

NORMAL DISTRIBUTION

- Finding probabilities by finding the area under the Normal Curve.
- Percentiles: Area based on percentage - used to work backwards
- 90th Percentile means 90\% of the data is below that value or 90% of the area under the Normal curve is to its left.

StatCrunch - Stat - Calculators - Normal

Normal Calculator

EXAMPIL: NORMAL DISTRIBJTIONS

Assume that adults have IQ scores that are Normally distributed with a mean of $\mu=105$ and a standard deviation $\sigma=20$. Find the probability that a randomly selected adult has an IQ of 120 or above.

StatCrunch - Stat - Calculators - Normal
Fill in mean, standard deviation, and score.
Press Enter or Compute to update.

EXAMPLE: NORMAL DISTRIBJTTONS

Assume that adults have IQ scores that are Normally distributed with a mean of $\mu=105$ and a standard deviation $\sigma=20$. Find the probability that a randomly selected adult has an IQ of 120 or above.

StatCrunch - Stat - Calculators - Normal

The probability that a randomly selected adult has an IQ of $\mathbf{1 2 0}$ or more is $\mathbf{0 . 2 2 7}$.

Mean: 105 Std. Dev.: 20
$\mathrm{P}(\mathrm { X } \longdiv { \geq 1 2 0 })=0.22662735$
Compute

EXAMPLE: NORMAL DISTRIBUTIONS

The average birth weight of elephants is 250 pounds. Assume that the distribution of birth weights is Normal with a standard deviation of 50 pounds. Find the birth weight of elephants at the 90th percentile

StatCrunch - Stat - Calculator - Normal Fill in mean, standard deviation, and probability.

Press Enter or Compute to update.

EXAMPLE: NORMAL DISTRIBUTIONS

The average birth weight of elephants is 250 pounds. Assume that the distribution of birth weights is Normal with a standard deviation of 50 pounds. Find the birth weight of elephants at the 90th percentile

StatCrunch - Stat - Calculator - Normal Fill in mean, standard deviation, and probability.

The birth weight of elephants at the $90^{\text {th }}$ percentile is 314 pounds.

BINOMIAL MODEL

- Requires:
- Fixed number of trials (n)
- Only two possible outcomes for each trial (success vs failure)
- Probability of success (p) is the same for each trial
- Trials are independent
- x is the number of successes out of n trials
- Expected Value of Binomial Distribution: $\mu=n p$
- Standard Deviation of Binomial Distribution: $\sigma=\sqrt{n p(1-p)}$

StatCrunch - Stat - Calculators - Binomial

Compute

BINOMIAL MODEL

- Because the binomial probability distribution models probability of discrete random variables, we have to pay attention to the wording!
- "Exactly 6" $\rightarrow P(X=6)$
- "More than 6" $\rightarrow P(X>6)$
- "At least 6" $\rightarrow P(X \geq 6)$
" "6 or more" $\rightarrow P(X \geq 6)$
" "Less than 6" $\rightarrow P(X<6)$
- "Fewer than 6" $\rightarrow P(X<6)$
- "At most 6" $\rightarrow P(X \leq 6)$

EXAMPLE: BINOMIAL MODEL

A recent poll indicated that about 74% of U.S. households had access to a high-speed Internet connection.
a. Suppose 100 households were randomly selected from the United States. How many of the households would you expect to have access to a high-speed Internet connection?

$$
\text { Expected value }=n p \rightarrow 100(0.74)=74
$$

You would expect $\mathbf{7 4}$ households to have access to high-speed internet connection.

EXAMPLE: BINOMIAL

A recent poll indicated that about 74\% of U.S. households had access to a high-speed Internet connection.
b. If 10 households are selected randomly, what is the probability that exactly 6 have high-speed access?

StatCrunch - Stat - Calculators - Binomial

Press Enter or Compute to update.

EXAMPLE: BINOMIAL

A recent poll indicated that about 74\% of U.S. households had access to a high-speed Internet connection.
b. If 10 households are selected randomly, what is the probability that exactly 6 have high-speed access?

StatCrunch - Stat - Calculators - Binomial

The probability that exactly 6 households have high-speed access is 0.158

EXAMPLE: BINOMIAL

A recent poll indicated that about 74\% of U.S. households had access to a high-speed Internet connection.
c. If 10 households are selected randomly, what is the probability that 6 or fewer have high-speed access?

StatCrunch - Stat - Calculators - Binomial

Press Enter or Compute to update.

EXAMPLE: BINOMIAL

A recent poll indicated that about 74\% of U.S. households had access to a high-speed Internet connection.
c. If 10 households are selected randomly, what is the probability that 6 or fewer have high-speed access?

StatCrunch - Stat - Calculators - Binomial
The probability that exactly 6 or fewer households have high-speed access is 0.248

CENTER FOR ACADEMIC SUPPORT

Hearnes 213
816-271-4524

